Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deciphering the brain’s structure-function relationship is key to understanding the neuronal mechanisms underlying perception and cognition. The cortical column, a vertical organization of neurons with similar functions, is a classic example of primate neocortex structure-function organization. While columns have been identified in primary sensory areas using parametric stimuli, their prevalence across higher-level cortex is debated, particularly regarding complex tuning in natural image space. However, a key hurdle in identifying columns is characterizing the complex, nonlinear tuning of neurons to high-dimensional sensory inputs. Building on prior findings of topological organization for features like color and orientation, we investigate functional clustering in macaque visual area V4 in non-parametric natural image space, using large-scale recordings and deep learning–based analysis. We combined linear probe recordings with deep learning methods to systematically characterize the tuning of >1,200 V4 neurons using in silico synthesis of most exciting images (MEIs), followed by in vivo verification. Single V4 neurons exhibited MEIs containing complex features, including textures and shapes, and even high-level attributes with eye-like appearance. Neurons recorded on the same silicon probe, inserted orthogonal to the cortical surface, often exhibited similarities in their spatial feature selectivity, suggesting a degree of functional organization along the cortical depth. We quantified MEI similarity using human psychophysics and distances in a contrastive learning-derived embedding space. Moreover, the selectivity of the V4 neuronal population showed evidence of clustering into functional groups of shared feature selectivity. These functional groups showed parallels with the feature maps of units in artificial vision systems, suggesting potential shared encoding strategies. These results demonstrate the feasibility and scalability of deep learning–based functional characterization of neuronal selectivity in naturalistic visual contexts, offering a framework for quantitatively mapping cortical organization across multiple levels of the visual hierarchy.more » « lessFree, publicly-accessible full text available November 5, 2026
-
Einhäuser, Wolfgang (Ed.)Responses to natural stimuli in area V4—a mid-level area of the visual ventral stream—are well predicted by features from convolutional neural networks (CNNs) trained on image classification. This result has been taken as evidence for the functional role of V4 in object classification. However, we currently do not know if and to what extent V4 plays a role in solving other computational objectives. Here, we investigated normative accounts of V4 (and V1 for comparison) by predicting macaque single-neuron responses to natural images from the representations extracted by 23 CNNs trained on different computer vision tasks including semantic, geometric, 2D, and 3D types of tasks. We found that V4 was best predicted by semantic classification features and exhibited high task selectivity, while the choice of task was less consequential to V1 performance. Consistent with traditional characterizations of V4 function that show its high-dimensional tuning to various 2D and 3D stimulus directions, we found that diverse non-semantic tasks explained aspects of V4 function that are not captured by individual semantic tasks. Nevertheless, jointly considering the features of a pair of semantic classification tasks was sufficient to yield one of our top V4 models, solidifying V4’s main functional role in semantic processing and suggesting that V4’s selectivity to 2D or 3D stimulus properties found by electrophysiologists can result from semantic functional goals.more » « less
-
Free, publicly-accessible full text available June 5, 2026
-
Free, publicly-accessible full text available April 10, 2026
-
Wei, Xue-Xin (Ed.)Machine learning models have difficulty generalizing to data outside of the distribution they were trained on. In particular, vision models are usually vulnerable to adversarial attacks or common corruptions, to which the human visual system is robust. Recent studies have found that regularizing machine learning models to favor brain-like representations can improve model robustness, but it is unclear why. We hypothesize that the increased model robustness is partly due to the low spatial frequency preference inherited from the neural representation. We tested this simple hypothesis with several frequency-oriented analyses, including the design and use of hybrid images to probe model frequency sensitivity directly. We also examined many other publicly available robust models that were trained on adversarial images or with data augmentation, and found that all these robust models showed a greater preference to low spatial frequency information. We show that preprocessing by blurring can serve as a defense mechanism against both adversarial attacks and common corruptions, further confirming our hypothesis and demonstrating the utility of low spatial frequency information in robust object recognition.more » « less
-
Abstract Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI. A core component of this is the embodied Turing test, which challenges AI animal models to interact with the sensorimotor world at skill levels akin to their living counterparts. The embodied Turing test shifts the focus from those capabilities like game playing and language that are especially well-developed or uniquely human to those capabilities – inherited from over 500 million years of evolution – that are shared with all animals. Building models that can pass the embodied Turing test will provide a roadmap for the next generation of AI.more » « less
-
Abstract Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. The neurons that encode these relevant signals typically constitute a nonlinear population code. Here we present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information. Our theory obeys fundamental mathematical limitations on information content inherited from the sensory periphery, describing redundant codes when there are many more cortical neurons than primary sensory neurons. The theory predicts that if the brain uses its nonlinear population codes optimally, then more informative patterns should be more correlated with choices. More specifically, the theory predicts a simple, easily computed quantitative relationship between fluctuating neural activity and behavioral choices that reveals the decoding efficiency. This relationship holds for optimal feedforward networks of modest complexity, when experiments are performed under natural nuisance variation. We analyze recordings from primary visual cortex of monkeys discriminating the distribution from which oriented stimuli were drawn, and find these data are consistent with the hypothesis of near-optimal nonlinear decoding.more » « less
-
Abstract Understanding the brain requires understanding neurons’ functional responses to the circuit architecture shaping them. Here we introduce the MICrONS functional connectomics dataset with dense calcium imaging of around 75,000 neurons in primary visual cortex (VISp) and higher visual areas (VISrl, VISal and VISlm) in an awake mouse that is viewing natural and synthetic stimuli. These data are co-registered with an electron microscopy reconstruction containing more than 200,000 cells and 0.5 billion synapses. Proofreading of a subset of neurons yielded reconstructions that include complete dendritic trees as well the local and inter-areal axonal projections that map up to thousands of cell-to-cell connections per neuron. Released as an open-access resource, this dataset includes the tools for data retrieval and analysis1,2. Accompanying studies describe its use for comprehensive characterization of cell types3–6, a synaptic level connectivity diagram of a cortical column4, and uncovering cell-type-specific inhibitory connectivity that can be linked to gene expression data4,7. Functionally, we identify new computational principles of how information is integrated across visual space8, characterize novel types of neuronal invariances9and bring structure and function together to uncover a general principle for connectivity between excitatory neurons within and across areas10,11.more » « lessFree, publicly-accessible full text available April 10, 2026
An official website of the United States government

Full Text Available